MaxText Support 🚀¶
MaxText is a high-performance, arbitrary-scale, open-source LLM framework written in pure Python/JAX. jax2onnx provides a self-contained example stack to export these models to ONNX.
- MaxText (DeepSeek, Gemma, GPT-3, Kimi, Llama, Mistral, Qwen) - https://github.com/AI-Hypercomputer/maxtext
Related Examples¶
All supported MaxText model families (DeepSeek, Gemma, Llama, Mistral, Qwen, etc.) are listed with their test status in the Examples table.
Supported Families¶
We support exporting the following model families from the MaxText model zoo:
- DeepSeek (v2 / v3)
- Gemma (2 / 3)
- GPT-3
- Kimi (K2)
- Llama (2 / 3 / 3.1 / 4)
- Mistral
- Qwen (3 / 3-Next / Omni)
Usage¶
Dependencies¶
To run the MaxText examples, you need to install the following additional dependencies:
Note: This installs
omegaconf,transformers,sentencepiece,tensorflow-cpu, andtensorboardX.tensorflow-cpuis required because MaxText usestensorboardand some TF utilities. It does not install the MaxText source tree itself; useJAX2ONNX_MAXTEXT_SRC(recommended) or install aMaxTextpackage separately.
Environment Configuration¶
JAX2ONNX_MAXTEXT_SRC(Optional): Path to a local clone of the MaxText repository. If not set, the system attempts to resolve it from an installedMaxTextpackage.JAX2ONNX_MAXTEXT_MODELS(Optional): A comma-separated list of model config names to test (e.g.,llama2-7b.yml). If unset, it defaults to a standard set of representative models.
Testing¶
To run all the latest MaxText examples (use poetry run to stay in the project venv):
cd tmp
git clone https://github.com/AI-Hypercomputer/maxtext.git
cd ..
export JAX2ONNX_MAXTEXT_SRC=tmp/maxtext
export JAX2ONNX_MAXTEXT_MODELS=all # or "gemma-2b,llama2-7b"
poetry install --with maxtext
poetry run python scripts/generate_tests.py
poetry run pytest -q tests/examples/test_maxtext.py
ONNX outputs land in docs/onnx/examples/maxtext.
This will: 1. Dynamically discover MaxText configs. 2. Instantiate the models with minimal inference settings (batch_size=1, seq_len=32). 3. Export them to ONNX and verify the graph structure.